

Welcome to django-watchman’s documentation!

Contents:

	django-watchman
	Documentation

	Testimonials

	Quickstart

	Pycon Canada Presentation (10 minutes)

	Features

	Available checks

	Trying it out with Docker

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Author / Maintainer

	Contributors

	History
	0.15.0 (2018-02-27)

	0.14.0 (2018-01-09)

	0.13.1 (2017-05-27)

	0.13.0 (2017-05-23)

	0.12.0 (2017-02-22)

	0.11.1 (2017-02-14)

	0.11.0 (2016-08-02)

	0.10.1 (2016-05-03)

	0.10.0 (2016-05-02)

	0.9.0 (2015-12-16)

	0.8.0 (2015-10-03)

	0.7.1 (2015-08-14)

	0.7.0 (2015-08-14)

	0.6.0 (2015-07-02)

	0.5.0 (2015-01-25)

	0.4.0 (2014-09-08)

	0.3.0 (2014-09-05)

	0.2.2 (2014-09-05)

	0.2.1 (2014-09-04)

	0.2.0 (2014-09-04)

	0.1.2 (2014-02-21)

	0.1.1 (2014-02-09)

	0.1.0 (2014-02-08)

django-watchman

[image: _images/django-watchman.svg]
 [http://badge.fury.io/py/django-watchman][image: _images/master.svg]
 [https://travis-ci.org/mwarkentin/django-watchman][image: _images/django-watchman1.svg]
 [https://coveralls.io/r/mwarkentin/django-watchman?branch=master]django-watchman exposes a status endpoint for your backing services like
databases, caches, etc.

[image: _images/watchmenozy.jpg]

Documentation

The full documentation is at http://django-watchman.rtfd.org.

Testimonials

We’re in love with django-watchman. External monitoring is a vital part of our service offering. Using django-watchman we can introspect the infrastructure of an application via a secure URL. It’s very well written and easy to extend. We’ve recommended it to many of our clients already.

— Hany Fahim, CEO, VM Farms [https://vmfarms.com/].

Quickstart

	Install django-watchman:

pip install django-watchman

	Add watchman to your INSTALLED_APPS setting like this:

INSTALLED_APPS = (
 ...
 'watchman',
)

	Include the watchman URLconf in your project urls.py like this:

url(r'^watchman/', include('watchman.urls')),

	Start the development server and visit http://127.0.0.1:8000/watchman/ to
get a JSON response of your backing service statuses:

{
 "databases": [
 {
 "default": {
 "ok": true
 }
 }
],
 "caches": [
 {
 "default": {
 "ok": true
 }
 }
],
 "storage": {"ok": true}
}

Pycon Canada Presentation (10 minutes)

[image: _images/3cb3399a917d42c117ce5134ff335d02b823f1da.jpg]
 [https://www.youtube.com/watch?v=iEgOCY7_zGI]

Features

Human-friendly dashboard

Visit http://127.0.0.1:8000/watchman/dashboard/ to get a human-friendly HTML
representation of all of your watchman checks.

Token based authentication

If you want to protect the status endpoint, you can use the WATCHMAN_TOKENS setting.
This is a comma-separated list of tokens.
When this setting is added, you must pass one of the tokens in as the watchman-token GET parameter:

GET http://127.0.0.1:8000/watchman/?watchman-token=:token

Or by setting the Authorization: WATCHMAN-TOKEN header on the request:

curl -X GET -H "Authorization: WATCHMAN-TOKEN Token=\":token\"" http://127.0.0.1:8000/watchman/

If you want to change the token name, you can set the WATCHMAN_TOKEN_NAME.
The value of this setting will be the GET parameter that you must pass in:

WATCHMAN_TOKEN_NAME = 'custom-token-name'

GET http://127.0.0.1:8000/watchman/?custom-token-name=:token

DEPRECATION WARNING: WATCHMAN_TOKEN was replaced by the WATCHMAN_TOKENS setting to support multiple authentication tokens in django-watchman 0.11.
It will continue to work until it’s removed in django-watchman 1.0.

Custom authentication/authorization

If you want to protect the status endpoint with a customized
authentication/authorization decorator, you can add WATCHMAN_AUTH_DECORATOR
to your settings. This needs to be a dotted-path to a decorator, and defaults
to watchman.decorators.token_required:

WATCHMAN_AUTH_DECORATOR = 'django.contrib.admin.views.decorators.staff_member_required'

Note that the token_required decorator does not protect a view unless
WATCHMAN_TOKENS is set in settings.

Custom checks

django-watchman allows you to customize the checks which are run by modifying
the WATCHMAN_CHECKS setting. In settings.py:

WATCHMAN_CHECKS = (
 'module.path.to.callable',
 'another.module.path.to.callable',
)

You can also import the watchman.constants to include the DEFAULT_CHECKS and PAID_CHECKS in your settings.py:

from watchman import constants as watchman_constants

WATCHMAN_CHECKS = watchman_constants.DEFAULT_CHECKS + ('module.path.to.callable',)

Checks take no arguments, and must return a dict whose keys are applied to the JSON response. Use the watchman.decorators.check decorator to capture exceptions:

from watchman.decorators import check

@check
def my_check():
 return {'x': 1}

In the absence of any checks, a 404 is thrown, which is then handled by the
json_view decorator.

Run a subset of available checks

A subset of checks may be run, by passing ?check=module.path.to.callable&check=...
in the request URL. Only the callables given in the querystring which are also
in WATCHMAN_CHECKS should be run, eg:

curl -XGET http://127.0.0.1:8080/watchman/?check=watchman.checks.caches

Skip specific checks

You can skip any number of checks, by passing ?skip=module.path.to.callable&skip=...
in the request URL. Only the checks in WATCHMAN_CHECKS which are not in the
querystring should be run, eg:

curl -XGET http://127.0.0.1:8080/watchman/?skip=watchman.checks.email

Check a subset of databases or caches

If your application has a large number of databases or caches configured,
watchman may open too many connections as it checks each database or cache.

You can set the WATCHMAN_DATABASES or WATCHMAN_CACHES settings in order
to override the default set of databases and caches to be monitored.

Ping

If you want to simply check that your application is running and able to handle
requests, you can call ping:

GET http://127.0.0.1:8000/watchman/ping/

It will return the text pong with a 200 status code. Calling this doesn’t
run any of the checks.

Bare status view

If you would like a “bare” status view (one that doesn’t report any details,
just HTTP 200 if checks pass, and HTTP 500 if any checks fail), you
can use the bare_status view by putting the following into urls.py:

import watchman.views
...
url(r'^status/?$', watchman.views.bare_status),

Django management command

You can also run your checks without starting the webserver and making requests.
This can be useful for testing your configuration before enabling a server,
checking configuration on worker servers, etc. Run the management command like so:

python manage.py watchman

By default, successful checks will not print any output. If all checks pass
successfully, the exit code will be 0. If a check fails, the exit code will
be 1, and the error message including stack trace will be printed to stderr.

If you’d like to see output for successful checks as well, set verbosity to
2 or higher:

python manage.py watchman -v 2
{"storage": {"ok": true}}
{"caches": [{"default": {"ok": true}}]}
{"databases": [{"default": {"ok": true}}]}

If you’d like to run a subset of checks, use -c and a comma-separated list
of python module paths:

python manage.py watchman -c watchman.checks.caches,watchman.checks.databases -v 2
{"caches": [{"default": {"ok": true}}]}
{"databases": [{"default": {"ok": true}}]}

If you’d like to skip certain checks, use -s and a comma-separated list of
python module paths:

python manage.py watchman -s watchman.checks.caches,watchman.checks.databases -v 2
{"storage": {"ok": true}}

Use -h to see a full list of options:

python manage.py watchman -h

X-Watchman-Version response header

Watchman can return the version of watchman which is running to help you keep
track of whether or not your sites are using an up-to-date version. This is
disabled by default to prevent any unintended information leakage for websites
without authentication. To enable, update the EXPOSE_WATCHMAN_VERSION
setting:

EXPOSE_WATCHMAN_VERSION = True

Custom response code

By default, watchman will return a 500 HTTP response code, even if there’s a
failing check. You can specify a different response code for failing checks
using the WATCHMAN_ERROR_CODE setting:

WATCHMAN_ERROR_CODE = 200

Logging

watchman includes log messages using a logger called watchman.
You can configure this by configuring the LOGGING section of your Django
settings file.

Here is a simple example that would log to the console:

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'handlers': {
 'console': {
 'class': 'logging.StreamHandler',
 },
 },
 'loggers': {
 'watchman': {
 'handlers': ['console'],
 'level': 'DEBUG',
 },
 },
}

More information is available in the Django documentation [https://docs.djangoproject.com/en/2.0/topics/logging/#configuring-logging]].

APM (i.e. New Relic)

If you’re using APM and watchman is being often hit for health checks (such as an ELB on
AWS), you will find some stats based on averages will be affected (average transaction
time, apdex, etc):

You can disable APM instrumentation for watchman by using the WATCHMAN_DISABLE_APM
setting:

WATCHMAN_DISABLE_APM = True

This currently supports the following agents:

	New Relic

Please open an issue if there’s another APM you use which is being affected.

Available checks

caches

For each cache in django.conf.settings.CACHES:

	Set a test cache item

	Get test item

	Delete test item

databases

For each database in django.conf.settings.DATABASES:

	Verify connection by calling connections[database].introspection.table_names()

email

Send a test email to to@example.com using django.core.mail.send_mail.

If you’re using a 3rd party mail provider, this check could end up costing you
money, depending how aggressive you are with your monitoring. For this reason,
this check is not enabled by default.

For reference, if you were using Mandrill, and hitting your watchman endpoint
once per minute, this would cost you ~$5.60/month.

Custom Settings

	WATCHMAN_EMAIL_SENDER (default: watchman@example.com): Specify an email to be the sender of the test email

	WATCHMAN_EMAIL_RECIPIENTS (default: [to@example.com]): Specify a list of email addresses to send the test email

	WATCHMAN_EMAIL_HEADERS (default: {}): Specify a dict of custom headers to be added to the test email

storage

Using django.core.files.storage.default_storage:

	Write a test file

	Check the test file’s size

	Read the test file’s contents

	Delete the test file

Default checks

By default, django-watchman will run checks against your databases
(watchman.checks.databases), caches (watchman.checks.caches), and
storage (watchman.checks.storage).

Paid checks

Currently there is only one “paid” check - watchman.checks.email. You can
enable it by setting the WATCHMAN_ENABLE_PAID_CHECKS to True, or by
overriding the WATCHMAN_CHECKS setting.

Trying it out with Docker

A sample project is available along with a Dockerfile to make it easy to try
out django-watchman.

Requirements

	Docker <https://www.docker.com/get-docker>

Instructions

	Build and run the Docker image with the current local code: make run

	Visit watchman json endpoint in your browser: http://127.0.0.1:8000/watchman/

	Visit watchman dashboard in your browser: http://127.0.0.1:8000/watchman/dashboard/

	Visit watchman ping in your browser: http://127.0.0.1:8000/watchman/ping/

	Visit watchman bare status in your browser: http://127.0.0.1:8000/watchman/bare/

Installation

At the command line:

$ easy_install django-watchman

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv django-watchman
$ pip install django-watchman

Usage

To use django-watchman in a project:

import django-watchman

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/mwarkentin/django-watchman/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

django-watchman could always use more documentation, whether as part of the
official django-watchman docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/mwarkentin/django-watchman/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-watchman for local development.

	Fork the django-watchman repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-watchman.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django-watchman
$ cd django-watchman/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

a. Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 watchman tests
$ python setup.py test
$ tox

a. To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/mwarkentin/django-watchman/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_watchman

Credits

Author / Maintainer

	Michael Warkentin <mwarkentin@gmail.com> - https://github.com/mwarkentin - @mwarkentin [https://twitter.com/mwarkentin]

Contributors

	Keryn Knight - https://github.com/kezabelle

	blag - https://github.com/blag

	kilbasar - https://github.com/kilbasar

	Joseph Kahn - https://github.com/JBKahn

	Ben Webber - https://github.com/benwebber

	Michael Fladischer - https://github.com/fladi

	Justin Sacbibit - https://github.com/justinsacbibit

	Ulrich Petri - https://github.com/ulope

	Tim Tisdall - https://github.com/tisdall

	Eduardo Cardoso - https://github.com/eduardocardoso

	Daniel Widerin - https://github.com/saily

	Ryan Wilson-Perkin - https://github.com/ryanwilsonperkin

	David Hoffman - https://github.com/dhoffman34

	James M. Allen - https://github.com/jamesmallen

	Ryan Verner - https://github.com/xfxf

History

0.15.0 (2018-02-27)

	[#114 [https://github.com/mwarkentin/django-watchman/pull/114]] Add “bare” status view (@jamesmallen)

	[#115 [https://github.com/mwarkentin/django-watchman/pull/115]] Adds WATCHMAN_DISABLE_APM option (@xfxf)

	[#63 [https://github.com/mwarkentin/django-watchman/pull/63]] Disable watchman version output by default, add EXPOSE_WATCHMAN_VERSION setting (@mwarkentin)

0.14.0 (2018-01-09)

	[#110 [https://github.com/mwarkentin/django-watchman/pull/110]] Replace vagrant + ansible with Dockerfile (@ryanwilsonperkin)

	[#111 [https://github.com/mwarkentin/django-watchman/pull/111]] Configure Django logging for checks (@dhoffman34)

	[#112 [https://github.com/mwarkentin/django-watchman/pull/112]] Add simple HTTP ping endpoint (@dhoffman34)

0.13.1 (2017-05-27)

	[#101 [https://github.com/mwarkentin/django-watchman/pull/101]] Write bytes to dummy file on storage check to fix an issue in Python 3 (thanks @saily!)

0.13.0 (2017-05-23)

	[#105 [https://github.com/mwarkentin/django-watchman/pull/105]] Add WATCHMAN_CACHES and WATCHMAN_DATABASES settings to override the Django defaults

	When using watchman with a large number of databases, the default checks can cause an excess of connections to the database / cache

	New settings allow you to check only a subset of databases / caches

	Watchman will still default to checking all databases / caches, so no changes necessary for most apps

0.12.0 (2017-02-22)

	[#100 [https://github.com/mwarkentin/django-watchman/pull/100]] Add WATCHMAN_EMAIL_SENDER setting to customize email check “from” address

0.11.1 (2017-02-14)

	[#99 [https://github.com/mwarkentin/django-watchman/pull/99]] Fix verbose output in management command on Django 1.8+

0.11.0 (2016-08-02)

	Update tests to run on Django 1.7 - 1.10

	[#87 [https://github.com/mwarkentin/django-watchman/pull/87]] Fix 500 errors with ATOMIC_REQUESTS enabled

	Disables atomic transactions on the watchman views to prevent generic 500 errors

	[#88 [https://github.com/mwarkentin/django-watchman/pull/88]] Restructure dashboard and switch icon libraries

	Make check types singular on dashboard

	Switch to FontAwesome instead of Glyphicon to track Bootstrap updates

	Improve traceback display width

	[#92 [https://github.com/mwarkentin/django-watchman/pull/92]] Support multiple auth tokens

	Fixes [#86 [https://github.com/mwarkentin/django-watchman/pull/86]]

	Deprecates settings.WATCHMAN_TOKEN and adds settings.WATCHMAN_TOKENS

0.10.1 (2016-05-03)

	[#81 [https://github.com/mwarkentin/django-watchman/pull/81]] Fix header-based authentication for tokens w/ dashes (-)

	Regex was overly specific for header values (w)

	Added TODO to follow up with a full regex for valid characters according to the spec

0.10.0 (2016-05-02)

	[#75 [https://github.com/mwarkentin/django-watchman/pull/75]] Enable header-based authentication

	Set a header instead of passing the token via GET param: "Authorization: WATCHMAN-TOKEN Token=\":token\""

	Improves security by keeping tokens out of logs

	[#79 [https://github.com/mwarkentin/django-watchman/pull/79]] Enable customization of email check

	Add WATCHMAN_EMAIL_RECIPIENTS setting - pass a list of recipients the email should be sent to

	Add WATCHMAN_EMAIL_HEADERS setting - pass a dict of custom headers to be set on the email

0.9.0 (2015-12-16)

	[#51 [https://github.com/mwarkentin/django-watchman/pull/51]] Update TravisCI Python / Django versions

	[#52 [https://github.com/mwarkentin/django-watchman/pull/52]] Fix deprecated url_patterns

	[#53 [https://github.com/mwarkentin/django-watchman/pull/54]] Change default error response code to 500

	[#56 [https://github.com/mwarkentin/django-watchman/pull/56]] Add @check decorator and refactor existing checks to use it (thanks @benwebber!)

	[#57 [https://github.com/mwarkentin/django-watchman/pull/57]] Sort caches / databases in response for more consistent responses

	[#59 [https://github.com/mwarkentin/django-watchman/pull/59]] Add .editorconfig for improved consistency in contributions

	[#61 [https://github.com/mwarkentin/django-watchman/pull/61]] Add Vagrantfile and docs for how to run and develop on Vagrant instance

	[#65 [https://github.com/mwarkentin/django-watchman/pull/65]] Include assets in source tarball for Debian packaging (thanks @fladi)

	[#71 [https://github.com/mwarkentin/django-watchman/pull/71]] Unpin django-jsonview in setup.py

	[#72 [https://github.com/mwarkentin/django-watchman/pull/72]] Fix stacktrace on dashboard modal and increase width for better readability

0.8.0 (2015-10-03)

	[#46 [https://github.com/mwarkentin/django-watchman/pull/46]] Allow custom response codes with the WATCHMAN_ERROR_CODE setting

0.7.1 (2015-08-14)

	Update headers in HISTORY.rst to attempt to fix localshop parsing issues

0.7.0 (2015-08-14)

	[#40 [https://github.com/mwarkentin/django-watchman/pull/40]] Bump django-jsonview for improved Django 1.8 compatibility

	Also brought travis Django test versions in line with currently supported Django versions (1.4.x, 1.7.x, 1.8.x)

0.6.0 (2015-07-02)

	[#30 [https://github.com/mwarkentin/django-watchman/pull/30]] Allow users to specify a custom authentication/authorization decorator

	Override the @auth decorator by setting WATCHMAN_AUTH_DECORATOR to a dot-separated path to your own decorator

	eg. WATCHMAN_AUTH_DECORATOR = 'django.contrib.admin.views.decorators.staff_member_required'

	Token-based authentication remains the default

	[#31 [https://github.com/mwarkentin/django-watchman/pull/31]], [#34 [https://github.com/mwarkentin/django-watchman/pull/34]] Add a human-friendly status dashboard

	Available at <watchman url>/dashboard/

	?check & ?skip GET params work on the dashboard as well

	[#35 [https://github.com/mwarkentin/django-watchman/pull/35]] Add X-Watchman-Version header to responses

0.5.0 (2015-01-25)

	Add watchman management command

	Exit code of 0 if all checks pass, 1 otherwise

	Print json stacktrace to stderr if check fails

	Handles --verbosity option to print all status checks

	-c, --checks, -s, --skips options take comma-separated list of python paths to run / skip

	Improve identifiability of emails sent from a django-watchman endpoint

	From: watchman@example.com

	Subject: django-watchman email check

	Body: This is an automated test of the email system.

	Add X-DJANGO-WATCHMAN: True custom header

	Add new default check: storage check

	Checks that files can be both written and read with the current Django storage engine

	Add WATCHMAN_ENABLE_PAID_CHECKS setting to enable all paid checks without modifying WATCHMAN_CHECKS

	Remove email_status from default checks

	Refactor utils.get_checks to allow reuse in management command

	get_checks now performs the optional check inclusion / skipping

	status refactored to pull check_list / skip_list from GET params and pass them to get_checks

	Namespace cache keys

	Update documentation

0.4.0 (2014-09-08)

	Add the ability to skip certain checks by passing one or more
skip=path.to.callable GET params when hitting the watchman URL

0.3.0 (2014-09-05)

	New check - email (watchman.checks.email_status)! django-watchman will now
check that your email settings are working too!

	Fix a few small issues in the readme

	Rearrange some of the code in checks.py

0.2.2 (2014-09-05)

	Fix and run tests on Python 2.7 and 3.4

	Bump django-jsonview dependency to latest

	Update tox envlist and travis config to test 2.7 / 3.4

0.2.1 (2014-09-04)

	Initialize django during tests to prevent app loading issue for Django >= 1.7

	Suppress MIDDLEWARE_CLASSES warning for Django >= 1.7

	Reorganize test imports

	Fix make test, make coverage, make release commands

	Add htmlcov/ directory to .gitignore

	Test django 1.4, 1.6, 1.7

0.2.0 (2014-09-04)

	Custom checks can now be written and run using the WATCHMAN_CHECKS setting

	A subset of the available checks can be run by passing the check GET param
when hitting the watchman url

0.1.2 (2014-02-21)

	Move package requirements out of requirements.txt and into setup.py

0.1.1 (2014-02-09)

	Remove django>=1.5.5 version specification

	Remove wheel requirement

0.1.0 (2014-02-08)

	First release on PyPI.

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 watchman	

 	
 	
 watchman.models	

Index

 W

W

 	
 	watchman (module)

 	
 	watchman.models (module)

watchman

	watchman package
	Submodules

	watchman.checks module

	watchman.decorators module

	watchman.models module

	watchman.settings module

	watchman.urls module

	watchman.utils module

	watchman.views module

	Module contents

watchman package

Submodules

watchman.checks module

watchman.decorators module

watchman.models module

watchman.settings module

watchman.urls module

watchman.utils module

watchman.views module

Module contents

 _images/3cb3399a917d42c117ce5134ff335d02b823f1da.jpg
D 021/1052 = T

_static/ajax-loader.gif

_images/watchmenozy.jpg

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-watchman’s documentation!

 		
 django-watchman

 		
 Documentation

 		
 Testimonials

 		
 Quickstart

 		
 Pycon Canada Presentation (10 minutes)

 		
 Features

 		
 Human-friendly dashboard

 		
 Token based authentication

 		
 Custom authentication/authorization

 		
 Custom checks

 		
 Run a subset of available checks

 		
 Skip specific checks

 		
 Check a subset of databases or caches

 		
 Ping

 		
 Bare status view

 		
 Django management command

 		
 X-Watchman-Version response header

 		
 Custom response code

 		
 Logging

 		
 APM (i.e. New Relic)

 		
 Available checks

 		
 caches

 		
 databases

 		
 email

 		
 storage

 		
 Default checks

 		
 Paid checks

 		
 Trying it out with Docker

 		
 Requirements

 		
 Instructions

 		
 Installation

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Author / Maintainer

 		
 Contributors

 		
 History

 		
 0.15.0 (2018-02-27)

 		
 0.14.0 (2018-01-09)

 		
 0.13.1 (2017-05-27)

 		
 0.13.0 (2017-05-23)

 		
 0.12.0 (2017-02-22)

 		
 0.11.1 (2017-02-14)

 		
 0.11.0 (2016-08-02)

 		
 0.10.1 (2016-05-03)

 		
 0.10.0 (2016-05-02)

 		
 0.9.0 (2015-12-16)

 		
 0.8.0 (2015-10-03)

 		
 0.7.1 (2015-08-14)

 		
 0.7.0 (2015-08-14)

 		
 0.6.0 (2015-07-02)

 		
 0.5.0 (2015-01-25)

 		
 0.4.0 (2014-09-08)

 		
 0.3.0 (2014-09-05)

 		
 0.2.2 (2014-09-05)

 		
 0.2.1 (2014-09-04)

 		
 0.2.0 (2014-09-04)

 		
 0.1.2 (2014-02-21)

 		
 0.1.1 (2014-02-09)

 		
 0.1.0 (2014-02-08)

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

